

PART NUMBER

COMPONENT SPECIFICATION

CS600/CS601

ISSUE 5

Component Specification For Hermetically Sealed, Radiation-Hard High Gain Photon Optocouplers

Features	Applications
 Total Ionizing Dose tested to 1 Mrad(si) 	 Space Radiation Equipment
 Displacement Damage tested to 1 MEV x 10¹³ 	 Military, high reliability system
 Hermetically Sealed 	 Medical instruments
 High Withstand Test Voltage up to 1,500V_{DC} 	 Mos, Cmos Applications
 8-pin DIP Package 	 Logic Interfacing
 High Common Mode Rejection 	 Data Transmission
 High Speed – typ 10 Mbits/s (75ns max) 	 Power Supply
	 Modems

DESCRIPTION

These devices are single, hermetically sealed optically coupled isolators. Each channel is composed of a Gallium Arsenide infrared emitting diode coupled to an integrated high speed photon detector. The output of the detector is an open collector Schottky clamped transistor. These optocouplers have internal shield providing a guaranteed common mode transient immunity specification of 1,000 V/ μ s. These optocouplers are for Isolation Voltage applications requiring up to 2,500 V_{DC}.

The CS600 series is being used in environments encountered by space applications. Package styles for this device include 8-pin DIP package, with surface mount and solder dip options available.

Absolute maximum ratings, recommended operating conditions, electrical specifications and performance characteristics are identical for all units. Any exceptions, due to packaging variations and limitations, are as noted.

ISOCOM Limited is AS9100 certified for the design and manufacture of electronic and optoelectronic components.

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom

STANDARDS

The following specifications have been complied with in the manufacturing of this product -

Aerospace Compliance Standards

AS9100D & ISO 9001:2015 – Design & Manufacture of Electronic and Optoelectronic Components (Ref GB15/92780)

Military Compliance Specifications

MIL-PRF-38534 – General Specification for Hybrid Microcircuits MIL-PRF-19500 – General Specification for Discrete Semiconductor Devices

Military Compliance Standards

MIL-STD-202 – Test Method Standard Electronic and Electrical Component Parts MIL-STD-883 – Test Method Standard Microcircuits MIL-STD-750 – Test Method Standard for Semiconductor Devices

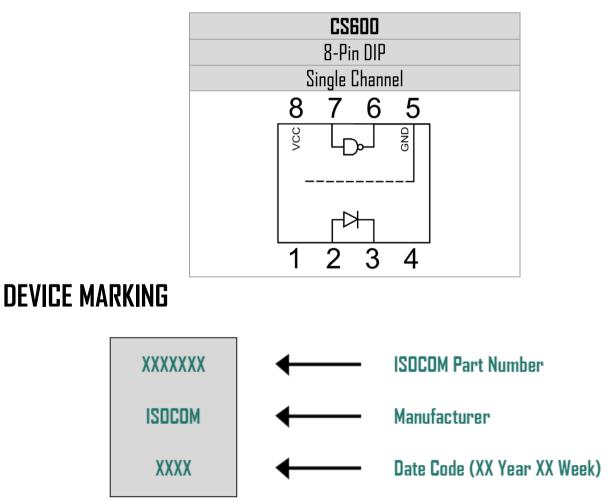
SCREENING INFORMATION

Our products can be screened to MIL-PRF-38534, applying test methods from MIL-STD-883; MIL-PRF-19500, applying test methods of MIL-STD-750; or a combination thereof. Please contact us for more information relating to the applicable screening processes.

AMENDMENT RECORD

Issue No.	Date	Description		
1	September 2013	First issue		
2	May 2019	Screening and Group Test information removed, Format edited		
3	May 2020	Pin numbers removed from schematic drawing		
4	September 2020	Updated Quality Management Logos and removed IECQ Logos		
5	November 2022	Updated Format		

For sales enquiries, or further information, please contact our sales office at -


ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom

PACKAGE STYLES AND CONFIGURATION OPTIONS

Package	8-Pin DIP			
Lead Style	-			
Channels	1			
Common Channel Wiring	-			
Isocom Part Number and Options				
Commercial	CS600			
Commercial	CS601			
Defense Screen Level	CS600/L2			
	CS601/L2			
Space Screen Level	CS600/L2S			
Space Screen Lever	CS601/L2S			
Standard Gold Plate Finish	Gold Plate			
Butt Joint	Option 10			
Solder Dipped	Option 20			
Gull Wing	Option 30			
Crew Cut	Option 60			

FUNCTIONAL DIAGRAMS

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom

ABSOLUTE MAXIMUM RATINGS

$T_A = 25^{\circ}C C.U.O.S$

Parameter	Test Conditions
Storage Temperature	-65°C to +150°C
Operating Temperature	-55°C to +125°C
Lead Soldering Temperature	260°C 1.6mm from case for 10S
Input-to-Output Isolation Voltage	①1500VDC
Input Diode	
Peak Forward Current	$40\text{mA} \le 1 \text{ mS}$ duration, 500pps
Average Forward Current	20mA (see note 3)
Reverse Voltage	5V
Power Dissipation	35mW
Output Detector	
Supply Voltage	7V > Vcc (1 minute maximum)
Current	25mA
Collector Power Dissipation	40mW
Voltage	7V > Vo (see note 1)

ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C C.U.O.S$

*All typical Values at Vcc = 5V, TA = 25°C each channel were appropriate

Parameter	Symbol	Test Conditions	Min	Тур.	Max	Units
Current Transfer Ratio ¹	CTR	$V_{CC} = 5.5V, V_{0}=0.6V, I_{F} = 10mA$	100	-	-	%
Lower Level output voltage ^{1 & 9}	Vol	V_{cc} =5.5V, I_F = 10mA, I_{oL} (sinking) 10mA	-	0.4	0.6	V
High level output current ¹	I _{оН}	IF =250μA, Vo= Vcc=5.5V	-	20	250	μA
High level supply current	Іссн	Vcc=5.5V, I _{F1} = I _{F2} = 0	-	15	28	mA
Low level supply current	lcc∟	Vcc=5.5V, I _{F1} = I _{F2} = 20mA	-	-	36	mA
Input forward voltage 1	VF	I _F = 10mA	-	1.5	1.9	V
· · · · · · · · · · · · · · · · · · ·		$I_F = 20 \text{mA}$	-	-	1.9	V
Input-Output Insulation Leakage Current ^{2 & 10}	li-o	RH=45%, t=5S, V _{I-O} = 1500vdc	-	-	1.0	μA
Input reverse breakdown ^{1 & 6}	V _{BR}	I _R = 10μA	5	-	-	V
Propagation Delay Time to Low Output Level ^{1 & 6}		$R_{L} = 510\Omega$, $V_{CC} = 5V$, $I_{F} = 13mA$, $C_{L} = 50pF$	-	-	100	nS
Low Output Level - 4 5 tPHL		$R_L = 510\Omega$, Vcc = 5V, $I_{F=}$ 13mA, C _L = 15pF	-	55	90	nS
Propagation Delay Time to High Output Level ^{1 & 5}		$R_L = 510\Omega$, $V_{CC} = 5V$, $I_{F=}$ 13mA, $C_L = 50pF$	-	-	100	nS
	tPLH	$R_L = 510\Omega$, $V_{cc} = 5V$, $I_{F=}$ 13mA, $C_L=$ 15pF	-	55	90	nS

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom

TYPICAL CHARACTERISTICS

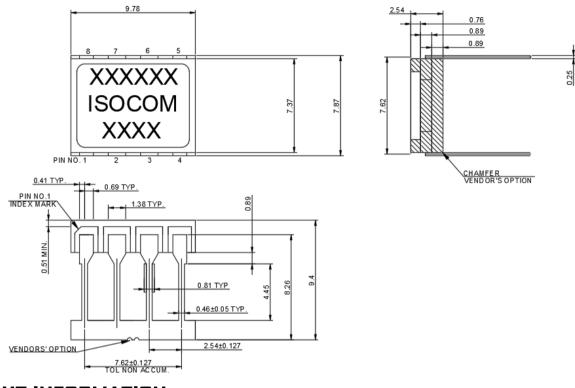
 $T_A = 25^{\circ}C U.O.S.$

*All typical Values at Vcc = 5V, $T_A = 25^{\circ}C$ each channel where appropriate

Parameter	Symbol	Test Conditions	Min	Тур.	Max	Units
Resistance ³	RIO	$V_{10} = 500 V_{dc}$	-	10 ¹²	-	Ω
Capacitance ³	CIO	f = 1MHz	-	1.9	-	pF
Input Capacitance ¹	CIN	$f = 1MHz, V_F = 0$	-	60	-	pF
Input Diode Temperature Coefficient ¹	<u>Δvf</u> Δta	I _F = 20mA	-	-1.9	-	mV/°C
Input-Input Insulation Leakage Current ⁴	II-1	45% Relative Humidity $V_{II} = 500 V_{dc}, t = 5S,$	-	0.5	-	nA
Resistance ⁴	RI-I	$V_{II} = 500 V_{dc}$	-	10 ¹²	-	Ω
Capacitance ⁴	CI-I	f = 1MHz	-	0.6	-	pF
Output Rise (10-90%) ¹	tr	$\label{eq:RL} \begin{array}{l} R_{L} = 510\Omega, \ V_{CC} = 5V, I_{F} = 13mA, \\ C_{L} = 15pF \end{array}$	-	35	-	ns
Output Fall Time (90-10%) ¹	tf	$\label{eq:RL} \begin{array}{l} R_{L} = 510\Omega, \ V_{CC} = 5V, I_{F} = 13mA, \\ C_{L} = 15pF \end{array}$	-	35	-	ns
Common Mode Transient Immunity at Logic High Output Level ^{1&7}	СМн	Vo (min) =2V, I _F = 0mA, V _{cm} =10V (peak), R _L = 510 Ω	-	-1000	-	V/µS
Common Mode Transient Immunity at Logic Low Output Level ^{1&7}	CM∟	Vo (max) =0.8V, IF = 10mA, Vcm =10V (peak), RL = 510 Ω	-	-1000	-	V/µS

Notes:

- 1 Each channel, where appropriate.
- Measured between pins 1 through 4 shorted together, and pins 9 through 16 shorted together. 2.
- Measured between pins 1 and 2, or 5 and 6 shorted together, and pins 9 through 16 shorted together. Measured between pins 1 and 2 shorted together, and pins 5 and 6 shorted together. 3.
- 4
- The t_{PLH} propagation delay is measured from the 6.5mA point on the trailing edge of the input pulse to the 1.5V point on the trailing edge of the 5. output pulse.
- The t_{PHL} propagation delay is measured from the 6.5mA point on the leading edge of the input pulse to the 1.5V point on the leading edge of the 6 output pulse.
- CM_H is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e., V_o > 2.0V). 7
- 8. CM_L is the maximum tolerable common mode transient to assure that the output will remain in the logic low state (i.e., V_o < 2.0V).
- It is essential that a bypass capacitor (0.1 to 0.1µF, ceramic) be connected from pin 10 to pin 15. Total lead length between both ends of the 9 capacitor and the isolator pins should not exceed 20mm.
- 10. This is a momentary withstand test, not an operating condition.


For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom

OUTLINE DRAWINGS

8-Pin DIP

PIN OUT INFORMATION

Pin Number	Pin Function
1	N/C
2	LED Anode
3	LED Cathode
4	N/C
5	GND
6	Out
7	Enable
8	Vcc

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom

DISCLAIMER

The information provided on the datasheet is for preliminary and general information only. We do not warrant that the information contained on the datasheet is suitable for your intended use, nor do we accept responsibility for loss suffered as a result of reliance by you upon the accuracy or currency of information contained on the datasheet. In particular, you should not make any investment or commercial decision on the basis of the information contained on the datasheet. You should obtain independent professional advice and make your own further enquiries before making any investment or commercial decision or taking any further action in any way related to the information contained on the datasheet.

We are not aware of any inaccuracy in the information contained on the datasheet. However, we do not warrant the accuracy, adequacy or completeness of such information.

We reserve the right to remove or alter any of the information contained on the datasheet at any time. However, we do not guarantee the currency of the information contained on the datasheet, nor do we undertake to keep the datasheet updated.

ISOCOM Limited 2 Fern Court Bracken Hill Business Park Peterlee County Durham SR8 2RR United Kingdom

W – www.isocom.uk.com E – sales@isocom.uk.com T - +44 (0) 191 416 6546

ISOCOM Limited is AS9100 certified for the design and manufacture of electronic and optoelectronic components.

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom